DEVOIR SURVEILLE de TP CHIMIE

1ère année de 1er cycle

Date du D.S. : 12 juin 2024 Durée : 0h30

Aucun document supplémentaire n'est autorisé. Les étudiants étrangers peuvent consulter un dictionnaire de traduction (électronique ou papier).

LES REPONSES SE FONT DIRECTEMENT SUR LE SUJET

DETERMINATION DE LA CHALEUR MASSIQUE DE MATERIAUX

 $C_{cal} = 250 \text{ J.K}^{-1}$; $C_{eau} = 4.18 \text{ J.K}^{-1}g^{-1}$

Expliquez à quoi correspondent m, T_{ini}, T₀ et T_{fin}.

Matériau i	m (g)	T _{ini} (°C)	M _i (g)	T ₀ (°C)	T _{fin} (°C)	C _i (J.K ⁻¹ .g ⁻¹)
fer	410	18,5	192,2	85	21,4	
PC	402	18,5	62,8	85	21,0	
PVC	400	18,5	60,8	85	20,7	

Calculez les 3 valeurs de C_i pour compléter le tableau.

DETERMINATION DE L'EFFUSIVITE THERMIQUE DE MATERIAUX

$$E = \sqrt{\lambda \rho C}$$
 $\lambda = \text{conductivit\'e thermique du mat\'eriau (W.m-1.K-1)}$

 ρ = masse volumique du matériau (kg.m⁻³)

C = chaleur massique du matériau (J.kg⁻¹.K⁻¹)

Immédiatement après contact la température de surface des deux matériaux est donnée par :

$$T = \frac{E_1 T_1 + E_2 T_2}{E_1 + E_2}$$

 $T = \frac{E_1 T_1 + E_2 T_2}{E_1 + E_2}$ Pour la peau on a $T_2 = 37$ °C et $E_2 = 400$ J.K⁻¹.m⁻².s^{-1/2}

Mesures pour le fer : cylindre de 5cm de haut et 2.5cm de diamètre Mesures pour le PC : cylindre de 2.5cm de haut et 5cm de diamètre

Remplissez le tableau ci-dessous, la température T calculée pour un contact entre des doigts nus et un échantillon porté à la même température que précédemment.

		<u> </u>			
Matériau i	λ (W.m ⁻¹ .K ⁻¹)	ρ (kg.m ⁻³)	C _i (J.kg ⁻¹ .K ⁻	E ₁ (J.K ⁻¹ .m ⁻ ² .s ^{-1/2})	T (°C)
fer	80.2				
PC	0.2				
PVC	0.2	1580			

CONCLUSION

Sachant qu'une brûlure du second degré peut apparaître en moins d'une seconde au-delà d'une température de contact de 70°C, quel échantillon ne faut-il surtout pas saisir à mains nues ?